SilverStone Strider Titanium ST60F-TI PSU Review

Cross-Load Tests And Infrared Images

Our cross-load tests are described in detail here.

To generate the following charts, we set our loaders to auto mode through our custom-made software before trying more than 25,000 possible load combinations with the +12V, 5V and 3.3V rails. The regulation deviations in each of the charts below are calculated by taking the nominal values of the rails (12V, 5V and 3.3V) as point zero.

Load Regulation Charts

Efficiency Chart

The ST60F-TI is clearly super efficient. With higher than 55W loads, efficiency is within the 90-95% range.

Ripple Charts

Infrared Images

Toward the end of the cross-load tests, we took some photos of the PSU with our modified FLIR E4 camera that delivers 320x240 IR resolution (76,800 pixels).

The temperatures inside of SilverStone's ST60F-TI remain low, despite the prolonged full load operation during the last part of our cross-load tests.

This thread is closed for comments
4 comments
    Your comment
  • JamesSneed
    So essentially this is a overpriced PSU with to much ripple. This left me wondering why the EVGA SuperNova 850 T2 was not in the charts. You mentioned the SuperNova towards the end and it just seems like the proper competitor since its another TI rated PSU.
  • Jack_565
    Nice to see a review on at least one of the Strider Titanium units.
    I recently purchased a 800w Version(these are the only Titanium PSUs in the Australian Market under 1000w) and its been everything i've wanted, running at almost 50% load it gives me its peak efficiency which is exactly why i paid the premium to get a Titanium PSU.
    I can see the 600w version being a more commonly purchased unit with the way power consumption has dropped, Skylake Rigs only use around 300w(give or take variables) which would be the Striders peak efficiency.
  • turkey3_scratch
    Jonnyguru also did a review on the same unit here, so the "high" ripple is consistent among these units. Probably due to a lack of filter capacitors, either to increase efficiency or conserve space. I'd like to see how the efficiency would be improved if they used a relay.

    What I don't understand is the small transformer. Aris, you mentioned that this unit, to have higher efficiency, switches to not-as-high of a frequency (which also affects transient response negatively). Since transformer size is inversely proportional to the AC frequency, wouldn't the transformer have to be larger? Is there any downside to a smaller transformer?

    Yet again, more PWR_OK cheaters. It seems like at least one in two PSUs are like this. I agree that no power switch on this unit seems very silly to me.
  • Aris_Mp
    The switching frequency probably isn't as high in order to achieve the higher possible efficiency, but this doesn't necessary means that it isn't high enough to allow for a small main transformer. In addition the design of the transformer plays a key role also in this.