3D III-V Transistors Could Enable Lighter Notebooks

The scientists believe that indium-gallium-arsenide could some day replace silicon as it has superior electron flow characteristics. Materials like indium-gallium-arsenide, which are referred to as III-V materials because they combine elements from the third and fifth groups of the periodic table, could make electron flow more efficiently and enable thinner and lighter computing devices in the future.

"Industry and academia are racing to develop transistors from the III-V materials," said Peide Ye, a professor of electrical and computer engineering at Purdue. "Here, we have made the world's first 3-D gate-all-around transistor on much higher-mobility material than silicon, the indium-gallium-arsenide." Details of the invention are currently shown at the International Electron Devices Meeting in Washington, D.C.

"Once you shrink gate lengths down to 22 nanometers on silicon you have to do more complicated structure design," Ye said. "The ideal gate is a neck-like, gate-all-around structure so that the gate surrounds the transistor on all sides."

He believes that 14 nm chip designs are still possible with silicon, but any further shrinks are likely to require a new material. "Nanowires made of III-V alloys will get us to the 10 nanometer range," he said.

Create a new thread in the UK News comments forum about this subject
This thread is closed for comments
No comments yet
Comment from the forums
    Your comment