Power Supply 101: A Reference Of Specifications

Power Switches

Three main types of power switches are used on PCs. They can be described as follows:

  • Front panel motherboard-controlled switch (ATX and newer)
  • Front panel power supply AC switch (AT/LPX; obsolete)
  • Integral power supply AC switch (PC/XT/AT; obsolete)

ATX and Newer

All ATX and newer power supplies that employ the 20- or 24-pin motherboard connector use the PS_ON signal to power up the system. In this design, the power supply runs in standby mode when plugged in with the system off. The PS_ON signal is routed from the power supply through the motherboard to a low-voltage momentary contact DC switch on the front panel. As a result, the remote power switch does not physically control the power supply’s access to the 120 V AC power, as in older-style power supplies. Instead, the power supply’s on or off status is toggled by the PS_ON signal received on the ATX Main power connector. This is sometimes called a soft-off switch because this is the name of the Advanced Configuration Power Interface (ACPI) state when the system is off but still receiving standby power.

The PS_ON signal can be manipulated physically by the computer’s power switch or electronically by the motherboard under software control. PS_ON is an active low signal, meaning the power supply voltage outputs are disabled (the system is off) when the PS_ON is high (greater than or equal to 2.0 V). This excludes the +5 VSB (Standby) on pin nine of the ATX main power connector, which is active whenever the power supply is connected to an AC power source. The power supply maintains the PS_ON signal at either 3.3 V or +5 V. This signal is then routed through the motherboard to the remote switch on the front of the case. When the switch is pressed, the PS_ON signal is grounded. When the power supply sees the PS_ON signal drop to 0.8 V or less, the power supply (and system) is turned on. Thus, the remote switch in a system using an ATX or newer power supply carries up to only +5 V of DC power, rather than the full 120 V–240 V AC current like that of the older AT/LPX form factors.

The actual power switch used in ATX systems is normally a tiny momentary contact push button switch, which is connected to the motherboard front panel header via a tiny two-pin connector. When the button is pushed, the motherboard then grounds the PS_ON signal in the main 20/24-pin power connector, causing the power supply to turn on.

Caution: The continuous presence of the +5 VSB power on pin nine of the ATX main connector means the motherboard is always receiving standby power from the power supply when connected to an AC source, even when the computer is turned off. As a result, it is even more important to unplug an ATX system from the power source before working inside the case than it is on earlier model systems.

The remote switch on ATX and newer designs can only put the system in a soft-off state, in which the system appears off but is still receiving standby power. Some ATX and newer power supplies include a hard override AC power switch on the back, which essentially disconnects AC power from the system when turned off. With the AC switch off, the system no longer receives standby power and is essentially the same as being completely unplugged from an AC outlet.

Tip: The design of the ATX power switch is such that the motherboard actually controls the status of the power supply. On systems with full support for ACPI, when you press the power switch, the motherboard informs the OS to perform an orderly shutdown before the power is actually turned off. However, if the system is locked up or corrupted, it can remain running when you press the switch. In that situation, you can manually override the ACPI control by pressing the switch continuously for more than four seconds, which overrides the software control and forcibly turns off the system.

PC/XT/AT and LPX Power Switches

The earliest systems had power switches integrated or built directly into the power supply, which turned the main AC power to the system on and off. This was a simple design, but because the power supply was mounted in the rear right of the system, it required reaching around to the right side near the back of the system to actuate the switch. Also, switching the AC power directly meant the system couldn’t be remotely started without special hardware.

Starting in the late 1980s, systems with LPX power supplies began using remote front panel switches. These were still AC switches; the only difference was that the AC switch was now mounted remotely (usually on the front panel of the chassis), rather than integrated in the power supply unit. The switch was connected to the power supply via a four-wire cable, and the ends of the cable were fitted with spade connector lugs, which plugged onto the spade connectors on the power switch. The cable from the power supply to the switch in the case contained four color-coded wires. In addition, a fifth wire supplying a ground connection to the case was sometimes included. The switch was usually included with the power supply and heavily shrink-wrapped or insulated where the connector lugs attached, to prevent electric shock.

This solved the ergonomic problem of reaching the switch, but it still didn’t enable remote or automated system power-up without special hardware. Plus, you now had a 120 V AC switch mounted in the chassis, with wires carrying dangerous voltage through the system. Some of these wires are hot anytime the system is plugged in (all are hot when the system’s turned on), creating a dangerous environment for the average person when messing around inside the system.

Caution: At least two of the remote power switch leads to a remote-mounted AC power switch in an AT/LPX supply are energized with 120 V AC at all times. You can be electrocuted if you touch the ends of these wires with the power supply plugged in, even if the unit is turned off! For this reason, always make sure the power supply is unplugged before connecting or disconnecting the remote power switch or touching any of the wires connected to it.

The four or five wires are usually color-coded as follows:

  • Brown and blue—These wires are the live and neutral feed wires from the 120 V power cord to the power supply. These are always hot when the power supply is plugged in.
  • Black and white—These wires carry the AC feed from the switch back to the power supply. These leads should be hot only when the power supply is plugged in and the switch is turned on.
  • Green or green with a yellow stripe—This is the ground lead. It should be connected to the PC case and should help ground the power supply to the case.

On the switch, the tabs for the leads are usually color-coded; if not, you’ll find that most switches have two parallel tabs and two angled tabs. If no color-coding is on the switch, plug the blue and brown wires onto the tabs that are parallel to each other and the black and white wires to the tabs that are angled away from each other. If none of the tabs are angled, simply make sure the blue and brown wires are plugged into the most closely spaced tabs on one side of the switch and the black and white wires on the most closely spaced tabs on the other side (see the following image).

Caution: Although these wire color-codings and parallel/angled tabs are used on most power supplies, they are not necessarily 100% universal. I have encountered power supplies that do not use the same coloring or tab placement scheme described here. One thing is sure: two of the wires will be hot with potentially fatal AC voltage anytime the power supply is plugged in. No matter what, always disconnect the power supply from the wall socket before handling any of these wires. Be sure to insulate the connections with electrical tape or heat-shrink tubing so you won’t be able to touch the wires when working inside the case in the future.

As long as the blue and brown wires are on one set of tabs and the black-and-white leads are on the other, the switch and supply will work properly. If you incorrectly mix the leads, you will likely blow the circuit breaker for the wall socket because mixing them can create a direct short circuit.

Create a new thread in the UK Article comments forum about this subject
This thread is closed for comments
No comments yet
Comment from the forums
    Your comment