Gigabyte Radeon RX Vega 56 Gaming OC 8G Review

Cooling & Noise

Cooling Solution & Backplate

There’s a direct relationship between power consumption and waste heat, and it's the thermal solution's job to cope with the latter. This is exactly where Gigabyte's card reveals the compromises made to keep costs low, even if the cooler still mostly works well.

Since the backplate is made of relatively thin aluminum, material is embossed in certain places to improve stiffness and add a bit of visual flair. A flattened heat pipe is glued to the backplate as well. Its purpose is to dissipate waste heat from the aforementioned MOSFETs across the plate more effectively. Other components on the PCB's back side are cooled directly using thermal pads.

Gigabyte coats the inside of the backplate in black, so thermal energy from components on the PCB is absorbed more easily. As you can see, pads help cool the area opposite AMD's Vega 10 GPU, along with nearby capacitors.

Cooling System Overview
Type
Air cooling
GPU CoolingHeat pipe direct touch
Aluminum sink
Cooling FinsAluminum, vertical orientation
Narrow configuration; partially inclined
Heat Pipes2x 8mm + 3x 6mm
Copper composite material
VRM CoolingGPU and memory VRM via cooling frame
RAM CoolingMemory cooling of HBM2 modules via heat pipe
Fans2x 9.5cm fans (10cm opening), 11 blades
Semi-passive control
BackplateAluminum
Cooling function with heat pipe and thermal pads

Two 8mm and three 6mm heat pipes made of composite material are responsible for transporting heat from the GPU and distributing it through finned areas of the sink. Heat sinks over some of the voltage converters also help prevent problematic hot-spots from developing.


Although we've seen many negative examples of heat pipe direct touch cooling, this approach can certainly be effective if it's implemented properly.

Our overlay shows that, in this case, Gigabyte's solution is a good fit. The heat pipes are flattened no more than necessary to achieve complete and functional coverage. As a result, the temperature range difference for the GPU, memory, and hot-spot are only 2°C above what we measured from Sapphire's vapor chamber-based cooler. That's extraordinary for a normal heat sink.

Fan Curves &  Noise

Semi-passive operation is implemented though an on-board controller, meaning that software like WattMan still reports a rotational speed even after this controller deactivates the fans. Fortunately, the truth reveals itself to a tachometer with a laser sensor. Using this hardware, we're able to map out the fan curve, which appears tuned to keep AMD's GPU from exceeding a 75°C temperature target.

After a period of heavy cooling during warm-up, the fans slow down and stabilize. However, Gigabyte tried a little too hard to keep noise down with its small cooler, resulting in fan speeds that have to speed up and slow back down under load. It certainly would have been possible to specify a faster, more constant speed setting. This would have evened out the curve and helped on-board components run a little cooler, too.

Little changes during our stress test. In short, the card's two fans perform quite well, but would definitely benefit from slightly higher rotational speeds.

As a consequence, the Radeon RX Vega 56 Gaming OC 8G has no margin left for lower fan speeds. This setup is too heavily optimized for noise, as the following table shows:

Fan RPM & Noise Measurements
Fan RPM, Open Test Bench, Maximum1731 RPM
Fan RPM, Open Test Bench, Average1134 RPM
Fan RPM, Closed Case, Maximum1730 RPM
Fan RPM, Closed Case, Average1264 RPM
Noise (Air) Range
33.4 (Minimum) to 40.8 dB(A)
Noise (Air) Average36.1 dB(A) (Warmed up)
Noise (Air) Idle0 dB(A)
Noise characteristics / Subjective ImpressionsLow-frequency bearing noise
Some motor noises below 1 Hz
Moderate air and turbulence noises
Hardly any voltage converter noise

This snapshot illustrates the entire frequency range of our laboratory measurements, adding some data to our subjective observations. The alternating fan speeds we mentioned previously are clearly visible.

An average of 36.1 dB (A) is more than acceptable for such a powerful card. In fact, the outcome is almost too good. We would have tolerated a bit more noise to get a stable fan curve. Fortunately, you could solve this on your own with a bit of manual adjustment.

MORE: Best Graphics Cards

MORE: Desktop GPU Performance Hierarchy Table

MORE: All Graphics Content

Create a new thread in the UK Article comments forum about this subject
This thread is closed for comments
2 comments
Comment from the forums
    Your comment
  • vMax
    Very good, in depth review...Enjoyed reading it!
  • DRagor
    So what sense it makes to create a card that can't be bought? (there is not a single Vega 56 available for sale at my whole country, and it has been that way for some time).